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On the compatibility of relativistic wave equations in 
Riemann spaces: I1 

H A Buchdahl 
Department of Theoretical Physics, Faculty of Science, Australian National University, 
Canberra ACT 2600, Australia 

Received 3 June 1981 

Abstract. Some details of a previous paper relating to the internal consistency in a Y4 of 
spin S equations (S 3%) are re-examined and a special case is brought to light. This occurs 
when one of the field spinors has indices of only one kind. It is argued that the prescription 
of minimal gravitational coupling is to be abandoned. In the special case just referred to, the 
minimally coupled equations are modified by the addition to one of them of a certain term 
which contains the Weyl tensor as a factor, so that consistency in an arbitrary V4 then 
obtains. 

1. Introduction 

Some years ago I investigated (Buchdahl 1962a, hereafter referred to as I) the 
compatibility, i.e. self-consistency, of pairs of relativistic spin S (=: in ) ,  non-zero mass 
equations 
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in a Riemannian spacetime V4 of signature -2. Here s and t are non-negative integers 
such that s + t = n 2 3; whilst if X is any spin tensor (indices suppressed) p " , X  stands for 
the transvection Vk'&;k of the Pauli tensor-spinor with the covariant derivative of X. 
These first-order equations result from the corresponding flat space equations merely 
by the formal replacement of partial by covariant derivatives, the curvature tensor itself 
not being brought in: one may speak of minimal gravitational coupling. The main 
conclusion reached in I was this: the pair (1.1) is internally consistent if and only if the 
V4 has constant Riemannian curvature when S > $ or is an Einstein space when S = 4. 

I now return to the earlier work for the following reasons. First, a hiatus present in 
the establishment of the result just quoted (when S >$) needs to be removed. This is 
done in 02. Second, the recognition that one has a special case whenever t = n  
previously slipped through the net. The consequences of this oversight are examined in 
0 3: it turns out that the V4 is, in this case, required to be merely conformally flat. Third, 
it is argued in 0 4 that in the present context the case for the mandatory adoption of 
minimal coupling is not compelling. One should theref ore cantemplate appropriate 
modifications of (1.1) for which self-consistency obtains in an arbitrary V4. This 
endeavour is more likely to meet with success in the special case t = n just referred to 
since the constraint imposed upon (1.1) by the requirement of mutual compatibility is 
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then weaker than for other values of t. A self-consistent set of equations is, indeed, 
constructed in (i 5 .  From this the wave equation obeyed by 6 is derived explicitly in 8 6. 

2. Previous work revisited 

Using the abbreviated notation introduced in 5 2 of I the equations (1.1) read 

Pu, + i "'77 = K5.  pw ' .  ',,( = K T  (2.1~1, b )  

respectively there follow the 'subsidiary 

P,,"X -_I 0 Pu, .  11'. 1 7 7  = 0. (2.24 b )  

In outline, the argument presented in I proceeded along the following lines. Alter- 
natively eliminating 6 and 77 between (2. l a )  and (2.1 b )  and again taking the symmetries 
of ( and 

By transvection with yCLStlu, and yy, 
conditions' 

into account one obtains the equations of constraint 

These also follow directly from ( 2 . 2 ~ )  and (2.2b) if use is made of (2.lb) and (2.la), 
respectively. Contemplating only (2.3a), and requiring that at any point the initial 
values of the field amplitudes be freely assignable, this yields the condition I (19), i.e. 

(Recall that in I the vector (bk was taken to vanish.) Contracting over all free dotted 
indices the contraction of the first term on the left vanishes identically. By subsequent 
contraction over t - 3 pairs of free undotted indices one arrives in effect at the condition 
CkIm,, = 0. It is at this point that a gap was inadvertently left in 8 3 of I, for one must now 
return to (2.4) in which only the first sum survives. Contract this time over all free 
undotted and all but one pair of free dotted indices. As a r'esult one is left with the 
condition of the form (rkd.,p '+&kl = 0 which entails that Ekl must vanish. Compatibility 
thus requires the V, to be a conformally flat Einstein space and therefore a space S4 of 
constant Riemannian curvature; see, however 8 3. On the other hand (2.3b) is then also 
satisfied so that the mutual compatiblity of (2.14 b )  is assured in an S,. 

3. The special case t = n 

The unqualified conclusion that the V4 must be an S4 if the equations (2.1) are to be 
mutually compatible has to be treated with caution. It is justified only if (2.3) requires 
both C k l m n  and Ekl to vanish. When S = $ and t = 2, however, only the first term on the 
right of (2.4) survives, so that this condition merely requires Ekl to vanish. When it does 
so (2.36) is also satisfied. In this case, then, the V4 must be an Einstein space, a result 
found long ago (Buchdahl 1958). 

A more far reaching special case arises when r = n for all values of n 2 3 .  (Recall 
from 8 2 of I that one can always take t 3 3, a convention in harmony with (2.4).) When 
I = n the absence of any dotted indices from .$ entails the absence of the first term on the 
left of (2.4). Indeed, since q has only a single dotted index one has merely the single 
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subsidiary condition 

PLil”“77 = 0 (3.1) 

Sk‘y”-lv”S;kl = 0. (3.2) 

and therefore only the one equation of constraint 

This in turn leads to (2.4) with the first sum on the left absent from it. Bearing the work 
of 0 3 of I in mind, it follows that when t = n the equations (2.la, b) are mutually 
compatible if and only if the V, is conformally flat. 

4. Remarks on minimal coupling 

The equations ( 2 . l a ,  6) are minimally coupled (to gravitation). Formally this means 
that they result from the corresponding flat space equations merely by replacing in the 
latter all partial by covariant derivatives. In other words, the Riemann tensor is not 
allowed to appear explicitly in these first-order equations. If one omits to specify that 
the minimal coupling prescription is intended to apply to first-order equations one 
meets an ambiguity in the sense that second-order equations derived by iteration from 
minimally coupled first-order equations are not, in general, themselves minimally 
coupled. (For example, the curvature scalar R appears explicitly in the iterated 
second-order Dirac equation.) 

Now, the minimal coupling prescription applied to the spin S equations generates 
equations which are mutually incompatible in an arbitrary V4. Under these circum- 
stances one may question the legitimacy of the insistence on minimal coupling. 
Moreover, one does well to reflect here on the fact that the equations of motion of a 
classical spinning particle are not minimally coupled. In any event, the requirement of 
minimal coupling seems to be little more than a reflection of an ill-defined appeal to 
‘simplicity’. If so, in a general V4 the ‘simplest’ equations corresponding to the usual flat 
space equations will not be (2.1), for they are mutually incompatible, but rather the 
‘simplest possible’-whatever that may mean-pair of mutually compatible equations 
which in flat space reduce to the usual flat space equations. They can always be thought 
of as modifications of (2.4) in which further terms are added to their right-hand 
members, granted that the additional terms depend linearly on 6 and 77 and vanish when 

It is not at all obvious how the required modifications might be achieved, if they be 
possible at all. Furthermore, in flat space, corresponding to different choices of the 
value of t one has for given S alternative pairs of equations (2.1) and all these are 
mutually equivalent (cf I Q 5) .  In a general V4, granted minimal coupling, it no longer 
makes sense to contemplate this mutual equivalence on account of the internal 
inconsistency of the individual pairs. In any event, formally one is no longer dealing 
with ‘free-field equations’ and in principle one has to think of different gravitational 
couplings for the various possible values of t. In particular, then, it may be possible to 
achieve compatibility for one value of t rather than another. 

In the light of these remarks I confine my attention here to the case t = n, for then the 
unmodified equations exhibit-very loosely speaking-the least degree of incompati- 
bility in the sense that one has only (3.2) to contend with, there being no second 
condition of the kind (2 .3b) .  In these circumstances, the problem of finding the 

Rktmn = 0. 



4 H A  Ruchdahl 

required modifications of (2.1) may be expected to be more tractable than when t # n. 
This, indeed, turns out to be the case. 

5. Compatible equations when t = n 

When t = n the equations (2.1) are 

P”’v,5 = Kt7 PI*lYnt7 = K 5 .  <S.la, b )  

Their mutual incompatibility may be thought of as coming about by the failure, in 
general, of the left-hand member of (5 . lh )  to be symmetric in v ~ - ~  and v,; for this is 
reflected by (3.1) and in turn by (3.2). It suggests itself to allow for this lack of symmetry 
by the addition on the right of (5.16) of an appropriate spinor ,dyl ”” (=: E), symmetric 
in its first n - 1 superscripts. Since one is effectively only concerned with its transvection 
with yvn-,y, ,  it is natural to make the ansatz 

(5.2) p” = [(n - l ) / n ] p ’  “n 2 y ” ”  l ) i ’*z  

where p” ’  ‘’n (=: p )  is some symmetric spinor. Note that 
,. 

YY,, - 1 ”J = P. (5.3) 

Transvection of the modified version of (5.1) throughout with yv,-,v, shows that 

P F ,  U“ , t7 = --P. (5.4) 

Eliminating Q between ( 5 . 1 ~ )  and (5.4) one finds immediately that 

K@ = - S k ‘ v , - l v , 6 , k l *  ( 5 . 5 )  

It is now manifest that the condition (3.2) is a result of prescribingfrom the outset that p 
be zero; but, as has been argued in § 4, it is not mandatory to do this. 

Since S(k‘)aB = 0 only the skew symmetric part of f i k I  occurs in (5 .5 )  which may 
therefore be written 

Taking the identities (5.4) and (6.3) of Buchdahl(1962b) into account, the terms which 
have r = n - 1 and r = n vanish, whilst the remaining terms all contain the Weyl tensor 
as a factor, so that 

Greater formal simplicity is attained by defining the ‘Weyl spinor’ 

:= $kla@S’n”y&‘k]mn 

for then (5.7) reads 
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This explicit expression for 0 may now be used on the right of the modified equation 
( 5 . l b ) ,  i.e. p L I Y n ~  = K ( + &  In short, the particular spin S equations 

Pli1v,5 = K77 ( 5 . 1 0 ~ )  

(5.10b) 

are mutually compatible in an arbitrary V4. In principle, therefore, it is now no longer 
necessary to ignore the effect of the 5 , ~  field upon the gravitational field. 

p . ’nq = K e  - K -1 [ (n  - l ) ( n  - ~ ) / ~ I ~ ~ ~ ( Y I C ~ ~ ~ ~ ~ ~ Y ~ . . . Y , _ I ) O L B Y  
W 1  

6. Second-order equation for 6 

If 77 be eliminated between ( 2 . 1 ~ )  and ( 2 . l b )  the resulting equation for ( contains an 
additive term not symmetric in vl, . . . , v,. This asymmetry will be expected to be just 
accounted for by the supplementary term in (5 .10b) .  That this is the case may be 
confirmed by detailed calculation. In short, recalling I(6), 5 obeys the equation 

(6.1) 
The right-hand member may be dealt with in the manner by now familiar and one ends 
up with the desired equation 

( o + 2 K * ) 5  = 2Sk‘ (V,(vl...Yn-l)* ;kl* 

[a + 2K2 + 2)R]5”1“~”n = -2(n - 1 ) ~ C r B ( Y 1 Y Z ( Y 3 ~ ~ ~ Y n ) C r @  (6 .2)  
in harmony with I(2b). Given a solution of this equation, 77 is then found from ( 5 . 1 0 ~ ) .  
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